Solvability and Algorithms for Functional Equations Originating from Dynamic Programming
نویسندگان
چکیده
The main purpose of this paper is to study the functional equation arising in dynamic programming of multistage decision processes f x opty∈Dopt{p x, y , q x, y f a x, y , r x, y f b x, y , s x, y f c x, y } for all x ∈ S. A few iterative algorithms for solving the functional equation are suggested. The existence, uniqueness and iterative approximations of solutions for the functional equation are discussed in the Banach spaces BC S and B S and the complete metric space BB S , respectively. The properties of solutions, nonnegative solutions, and nonpositive solutions and the convergence of iterative algorithms for the functional equation and other functional equations, which are special cases of the above functional equation, are investigated in the complete metric space BB S , respectively. Eight nontrivial examples which dwell upon the importance of the results in this paper are also given.
منابع مشابه
On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملNumerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function
A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...
متن کاملReal Time Dynamic Simulation of Power System Using Multiple Microcomputers
Recent developments in the design and manufacture of microcomputers together with improved simulation techniques make it possible to achieve the speed and accuracy required for the dynamic simulation of power systems in real time. This paper presents some experimental results and outlines new ideas on hardware architecture, mathematical algorithms and software development for this purpose. The ...
متن کاملRobust inter and intra-cell layouts design model dealing with stochastic dynamic problems
In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011